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ABSTRACT: The paper derives the 
model of a large scale system under 
position control. Its Kalman filter 
model and the Kalman gain matrix 
are derived and integrated in the 
controller. Problems are discussed. 
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I. INTRODUCTION In position 
control noise signals are removed by 
Kalman filters integrated into control [2,3] 
system design. The dynamic positioning of 
large systems is modeled and the Kalman 
filter effect in control is presented. 

Dynamic positioning systems are 
coupled to other mechanical structures 
and errors in positioning the primary 
element, are transfered in this mechanical 

chain, enhanced, with catastrophic results. 
Such systems are machine tools, 
meteorological ballons, platforms, robot 
armqetc. Noise induces motion of a freely 
positioned body,in 6 degrees of freedom 
In the case of a body we specify the 
following objectives: 
a allowable radial position errors 

b. frequency variations 0.3 

Any low frequency noise induced on the 
body position, results in appropriate 
control actions properly activated by the 
control system, while high frequency 
noise might lead to actuators failure and 
unnecessary energy dissipation. 

system functions and hardware: 
a. position measurements 
b. external reasons 
C. controller 

( 3  % and 

radsec 

Noise is induced by the following 

Fig, L Large scale system architecture for positiotl control 

Position in large scale objects is 
measured by beacons (based on time-of- 
flight measurements of ultrasound pulses); 
any displacement Y caused by noise is: 

V is the sound velocity 

where: 
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d the beacons separation 
D the reference wall 
Angle measurement ( 6 )  requires com- 
pensation for body roll and pitch. ACOU- 
stic noise variance is typically 0.1 m . 

that  
a. 

2 

For simplification we consider 

only the motions in the sway and 
yaw direcions, since surge motions 
are normally decoupled from the 
sway and yaw motions, 
the low and high frequency 
structure motions are determined 
separately (for simplicity and 
accuracy reasons) and 

C. the total motion is the sum of the 
above analyzed motions 

Induced noise in the system could have 
the following statistical characteristics 
and source origin: 
(a) highly directive 
(b) with an average directivity ~1 

and a zero mean component modeled by a 

b. 

- 

random variable @ with a Gaussian 

distribution; in case of drift the @ 

component has no zero mean value 
(c) relatively steady second order 

(d) 

- 
- 

forces (main disturbance) 
mass inertia and viscous drag and 
other forces; they are function of 
the system states and included in 
the non-linear low frequency 
model of the under position 
control system dynamics; the non 
linear equations can be linearized 
around an operating point 
determined by n - 

Forces of nature (a), (b) and (c) are 
combined and named Fa, and they are 
proportional to the control signal U of 

the linearized modeL 

model: 

- 
For a system with a state space 

the elements 313 and a31 denote the sway to 
yaw motions interactions. The elements aij 
depend on the noise and mean valued 
disturbances. The states 
are: 
x2 - - the sway position 
x4 - - the heading angle 

X2 = x1 = 
X4 = x3 = 
For a system model, where the position 
control actions are amplified to forces 
states x5 and x6 : 

the sway velocity 
the heading velocity 

while the components of force and torque in the sway and yaw directions are: 

The total applied force in the sway direction, F, is: 

(Y1.x5+Y2.x6? + @ l + ( e l . n l + e 2 - n ~ ?  
- - P, 

The total applied torque in the sway directioil, T,, is: 

The low frequency state space model becomes: 

X, = A,.x,+B,.u,+D,.~,+E1.nl 
N Y -  N N  N N  N N  

where: 
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1 0 0 0  0 0 

a31 0 a33 0 b2.Y, b2-Y4 
l o o 1  0 0  0 

0 -b, 0 

0 0 -b, 

A, = 
N 

The low frequency component of the system position presents the following output 
equation: 

1 Ylmq I l o  1 0 0 0 01 

S = L o  0 0 1 0 01 
y1 =L I= c , .~ ,  where - Ylm Y N  

T I . Q U E N C  Y POSITION w [ rausec j is the frequency 
CONTROL: The noise spectrum is a = 4.894 
derived by source and system signal b = 3.109 / (hy3) 

analysis or it is known (wind, seawaves, 
vibrations, etc spectra); for sea: 

S ( w ) = T . e  o4 [ m2 . sec] X h  = Ah.xh+Dh.wh 

where: 

hy3 [ m ] = the significant wave height 
The worst case spectrum is white noise 
input and the state equations are: b a -- 

- - - - -  w 
where: 

The high frequency component of the position of the vessel is given by the output equation: 

By extended Kalman filtering we can get 111. LINEARIZED MODEk 
a better estimate [4,5,6]. Let’s consider a system with state 

equation for the low and high frequency: 
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The final position is the sum of the low and high frequency motions, ie: 
Y = Y,+Yh 
U N -  

The position measurement z is: - 

is the white noise random position control 
effects component. 
For known noise state disturbances in the 
position control system, the system 
matrices are considered to be 
constant,while in general they are time 
varying. The state space equations, in 
brief, are: 

IV. ESTIMATION For control 
puprposes it is not the Y = YI+Yh 

N "  

system position that it should be 
estimated but the yl 
position componeht The 

low frequency - 

rv,i 
where "L1 

X =  A.x+B.u+D.~B 

2 = c . x + v  
U includes the deterministic control 

and measurable disturbance inputs 
# represents white process noise input 

V represents the white measurement 

N N N  N N  - U  

where: 
- - -  - 
Y 

N 

N 

noise signal 

question then is to produce an estimate of 
the y ,  ie. a j ,  . By using low 

frequency components estimated state 
feedback we build the position controller. 
By including low and high frequency 

- - 

com] 

L -  

j = C.2 - -  
U 

ments we g e t  

(C .X-  z )+B.u  - -  - - -  

M 
-1 

h 

X U 
-1 -1 . 

'- PI controller Kalman estimator 
' i "  

-1  

Fig. 2 Dynamic Positioning Control System and Estimator 
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For given noise covariance the Kalman 
gain matrix K( t )  is calculated; the 
measurement covariance matrix is well 
defined, while the process covariance 
matrix is not well defined. Integral 
controller term cancels out effects from 
unknown disturbances, without affecting 
the Kalman filter. The controller gain 
matrices should satisfy classical design 
and optimal control criteria [l]. Peed- 
forward control can balance fast 
disturbances [8]. 

Kalman filter increases complexity in 
design, control and calculation; 
approximations (measurements time lags, 
nonlinearities, uncertainties, e.tc.) reduce 
this complexity and introduce errors in 
control precision and states estimation. 
Position control actuators are non-linear. 
Some low frequency disturbances are 
treated as unmodelled phenomena. 

filters are used to attenuate with the 
minimum of phase shift at the lower 
control frequencies. The Wiener filter is 
equivalent to the constant gain Kalman 
filter, but expressed in transfer function 
form; for non-stationary noise Wiener 
filter's initial response is suboptimal [l]. 

The number of states in the 

Cascaded resonant band-rejection 

V. CONCLUSIONS: 
Dynamic positioning of a large is 

obtained by Kalman filter; the state 
estimation problem divides naturally into 
high and low frequency parts. The 
method's main disadvantage is the need 
for greater computing power [7], a 
demand that is overcome thanks to 
computer development. Instability must 
allways be detected in time, since position 
control divergence is possible [9]. 
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APPENDIX I: BO_UATIQNS o f MOTION: The dynamical equations of a large sGale 
system are: 

1.044.~i - Y . V  = Fa, + 0 . 0 9 2 . ~ ~  - 0.138.u.U 

1.84.V +r .u  = Fa2 - 2.58.v.U - 1.8.-+ O..O65.r.Irl 

0.2861.f = T, -0.764.~.~+0.258.~.U-0.154.r.lrl 

v 3  
U 

where U, v, r are te  velocioties of linear 
disturbances in the surge, sway and yaw 

directions, U the system velocity 

relatively to ground Le. U = 1/=7 
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APPENDIX 11. The KALMAN GAIN MATRIX: 
system and Kalman filter are: 

x ( k + l )  = c D ( k + l , k ) . x ( k ) + Y u ( k ) + T O ( k )  - -- -- - - 
- z ( k )  = C x ( k )  - + - v ( k )  

E o ( k )  = O  {-  I 
E v(k) = o  {- 1 E { p ) . f ( m ) }  = R6, - 

Discrete 

where akm is the Kronecker delta function. 

Y N = N 
JW*).B.dz N 

0 

0 

where 'tl is the sampling interval; the state estimates are: 

N i ( k  + llk) = @(k + dk).  ;(klk) 
h I\ A 

x(k + 1lk + 1) = x(k  + l k )  + K(k  + 1). y ( k  + 1) - c. - -  x(k +Ilk) - - 1. 
while: 

P( N k + ilk) = aj( N k + ilk). P( klk ). Q > ~  - ( k  + ilk) + r. U -  Q. r 
U 

The Kalman gain matrix is: 

K ( k + l l k )  = P(k+i lk ) .c~ .[C.P(k+l /k ) .CT+R]l  - U - -  - -  

The error covariance matrix is: 

P(k  - +ilk + 1) = ( I -  - -  K ( k  + l).C). N N  P(k  +@).(I-  N N  K ( k  + l ) q T  N + K ( k  N + l).R.KT(k - N  + 1) 
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